Concohntzon

$$
\begin{aligned}
l * f(\alpha, \beta) & =\sum_{x=1}^{N} \sum_{y=1}^{N} k(x, y) f(\alpha-x, \beta-y) \\
& =\sum_{x=0}^{N-1} \sum_{y=0}^{N-1} k(x, y) f(\alpha-x, \beta-y)
\end{aligned}
$$

Reverse the ovelur

$$
\begin{aligned}
& k(0,0) f(\alpha, \beta)+k(0,1) f(\alpha, \beta-1)+\cdots+k(0, N-1) f(\alpha, \beta-N+1) \\
= & +\begin{array}{c}
k(1,0) f(\alpha-1, \beta)+ \\
\vdots \\
\text { Reverse the } \\
\text { order } \\
k(1,1) f(\alpha-1, \beta-1)+\cdots+k(1, N-1) f(\alpha-1, \beta-N+1) \\
\ddots \\
\text { Rotate } 160^{0} \\
+k(N-1,0) f(\alpha-N+1, \beta) \\
+k(N-1,1) f(\alpha-N+1, \rho-1)+\cdots+k(N-1, N-1) f(\alpha-N+1, \beta-N+1)
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
= & k(0,0) f(\alpha, \beta)+k(0, N-1) f(\alpha, \beta-N+1)+\cdots+k(0,1) f(\alpha, \beta-1) \\
+ & k(N-1,0) f(\alpha-N+1, \beta)+k(N-1, N-1) f(\alpha-N+1, \beta-N+1)+\cdots+k(N-1,1) f(\alpha-N+1, \beta-1) \\
& \vdots \\
& +k(1,0) f(\alpha-1, \beta)+k(1, N-1) f(\alpha-1, \beta-N+1)+\cdots+k(1,1) f(\alpha-1, \rho-1)
\end{aligned}
$$

Periodic:

$$
\begin{aligned}
& =k(0,0) f(\alpha, \beta)+k(0, N-1) f(\alpha, \beta+1)+\cdots+k(0,1) f(\alpha, \beta+1 v-1) \\
& +k(N-1,0) f(\alpha+1, \beta)+k(N-1, N-1) f(\alpha+1, \beta+1)+\cdots+k(N-1,1) f(\alpha+1, \beta+1 N-1) \\
& + \\
& +k(1,0) f(\alpha+N-1, \beta)+k(1, N-1) f(\alpha+N-1, \beta+1)+\cdots+k(1,1) f(\alpha+1 N-1, \beta+N-1)
\end{aligned}
$$

k

$$
\begin{array}{cccc}
k_{11} & k_{12} & \cdots & k_{1 N} \\
k_{12} & k_{22} & \cdots & k_{1 N} \\
\vdots & \vdots & \ddots & \vdots \\
k_{N 1} & k_{N 1} & \cdots & k_{N N U}
\end{array} \quad \begin{array}{ccccc}
k_{N I N} & \cdots & k_{N 2} & k_{N 1} \\
\vdots & \ddots & \vdots & \vdots \\
k_{1 N} & \cdots & k_{22} & k_{21} \\
k_{1 N} & \cdots & k_{12} & k_{12}
\end{array}
$$

pat on V

In fact the same

pat on V

$$
\begin{array}{|cccc}
f_{\alpha \beta} & f_{\alpha, \beta+1} & \cdots & f_{\alpha, \beta+1 w+1} \\
f_{\alpha+1, \beta} & f_{\alpha+1, \beta+1} & \cdots & f_{\alpha+1, \beta+w+1} \\
\vdots & \vdots & \ddots & \vdots \\
f_{\alpha+w, 1, \beta} & f_{\alpha+\cdots+1, \beta+1} & \cdots & f_{\alpha+\alpha+, \beta+w-1}
\end{array}
$$

Example

$$
\begin{aligned}
& h(0,0) \\
& k \neq f(\alpha, \beta)=-4 f(\alpha, \beta)+f(\alpha+1, \beta) \\
& f(1,0) \\
& f(\alpha-1, \beta)+f(\alpha, \beta+1)+j(0,1, \beta-1) \\
& k(0,0)=-4 \\
& k(-1,0)=1 \\
& k(0,-1)=1 \quad k(1,0)=1 \\
& k(0,1)
\end{aligned}
$$

In Indxiy stanting flom 1 :

$$
k_{2}=\left[\begin{array}{lllll}
& & & & 1 \\
& & & & 0 \\
& & & & \\
& & & \\
1 & 0 & \cdots & 0 & 1
\end{array}\right]
$$

In Indxing stertig fom 0 :

$$
k=\left[\begin{array}{cccccc}
-4 & 1 & 0 & \cdots & 0 & 1 \\
1 & & & \\
0 & & & & \\
\vdots & & & & & \\
0 & & & & &
\end{array}\right]
$$

Image Sharpering
$f \in \mathbb{R}^{N \times N}$ clean image
Δf is Discrette Laplaciem of f
$\binom{$ Ios continuous Setti-g, }{$\Delta f:=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}$ if $f: \mathbb{R}^{2} \rightarrow \mathbb{R}}$
Oove discuetiration of Δ is given by:

$$
\begin{aligned}
\Delta f(x, y)= & {\left.[f(x+1, y)-f(x, y)]\} \approx \frac{\partial f}{\partial x}\right\} \approx \frac{\partial^{2} f}{\partial x^{2}} } \\
& -[f(x, y)-f(x-1, y)]\} \approx \frac{\partial f}{\partial x} \\
& +[f(x, y+1)-f(x, y)]\} \approx \frac{\partial f}{\partial y} \\
& \left.-[f(x, y)-f(x, y-1)]\} \approx \frac{\partial f}{\partial y}\right\} \approx \frac{\partial^{2} f}{\partial y^{2}} \\
= & -4 f(x, y)+f(x+1, y)+f(x-1, y) \\
& +f(x, y+1)+f(x, y-1)
\end{aligned}
$$

Δt can be understended as measuring the smoothness of f.

Whin there is a Peak:
$\frac{\partial^{2} f}{\partial x^{2}}<0$ and $\frac{\partial^{2} f}{\partial y^{3}}<0$

$\Rightarrow \Delta f$ "veiny negative"
whee there is a valley:

$$
\frac{\partial^{2} f}{\partial x^{2}}>0, \frac{\partial^{2} f}{\partial y^{2}}>0
$$

$\Rightarrow \Delta f$ "very positive"
$f-\Delta f$ is unsmoothing f,
"peals become more peal" "valley become more valley"

This is Galled Laplacian Masking.
$\tilde{f} \in \mathbb{R}^{\text {lviv }}$ smoothed f.
\tilde{f} is smoothed, means that \tilde{f} has less detells.
$f-\tilde{f}$ is the removed details.

$$
\underset{\bar{T}}{s}=f+\frac{k(f-f)}{\uparrow}
$$

sharped add more details to the original inge
Uusharp Masking: $k=1$
eng.
If f is smoothed by a low pass filter to \tilde{f},
Then $\operatorname{DFT}(\mathcal{F})(u, v)=\frac{H((u, v) \operatorname{DFT}(f)(n, v)}{\text { low pass fitter } .}$

$$
D F T(g)(u, v)=(2-H(u, v)) D F T(f)(u, v)
$$

If Batter north. Low-pass filter is applied,

$$
D F T(g)(u, v)=\frac{1+2\left(D(u, v) / D_{0}\right)^{n}}{1+\left(D(u, v) / D_{0}\right)^{n}} D T T(f)(u, v)
$$

PDE approach (See also Heat / Diffusion Equation)
Consider
space time

$$
\frac{\partial I(x, y ; t)}{\partial t}=t\left[\frac{\partial^{2} I(x, y ; t)}{\partial x^{2}}+\frac{\partial^{2} I(x, y ; t)}{\partial y^{2}}\right]
$$

where $(x, y) \in \mathbb{R}^{\prime}, \quad t>0$,

$$
I(x, y ; t) \in \mathbb{R}
$$

You can understand I us a movie, where the next frame is obtained by modifying the previous frame.
Let $I_{0}(u, v)$ be an image. (first frame)

$$
g(x, y ; t):=\frac{1}{2 \pi t^{2}} e^{-\left(x^{2}+j^{2}\right) / 2 t^{2}}
$$

First Note that g satisfy the PDE:

$$
\begin{aligned}
& \frac{\partial g}{\partial t}=-\frac{1}{\pi t^{3}} e^{-\left(x^{2}+y^{2}\right) / 2 t^{2}}+\frac{1}{2 \pi t^{2}} e^{-\left(x^{2}+y^{2}\right) / 2 t^{2}}\left(\frac{x^{2}+y^{2}}{t^{3}}\right) \\
& \frac{\partial g}{\partial x}=-\frac{1}{2 \pi t^{2}} e^{-\left(x^{2}+y^{2}\right) / 2 t^{2}}\left(\frac{x}{t^{2}}\right) \\
& \frac{\partial^{2} \xi}{\partial x^{2}}=\frac{1}{2 \pi t^{2}} e^{-\left(x^{2}+y^{2}\right) / 2 t^{2}}\left(\frac{x}{t^{2}}\right)^{2}-\frac{1}{2 \pi t^{2}} e^{-\left(x^{2}+y^{2}\right) / 2 t^{2}}\left(\frac{1}{t^{2}}\right)
\end{aligned}
$$

Similar for $\frac{\partial^{2} g}{\partial y^{2}}$, thin $\frac{\partial S}{\partial t}=t\left(\frac{\partial^{2} g}{\partial x^{2}}+\frac{\partial^{2} g}{\partial y^{2}}\right)$.
continuous 2 D woncolutim

$$
\begin{aligned}
& I(x, y ; t) i=g * I_{0}(x, y) \\
& \quad=\int_{\mathbb{R}^{2}} \rho\left(u, v i() I_{0}(x-u, y-v) d u d v\right.
\end{aligned}
$$

dermas the on time, integration on space,

$$
\frac{\partial I}{\partial t}=\frac{\partial}{\partial t} \int_{\mathbb{1 2}^{2}}^{t^{2} \rho(u, v ; t) I_{0}(x-u, y-v) d u d v}
$$

[If g, $\frac{\partial g}{\partial t}$ are continuous.
$\left.\begin{array}{l}\text { we can inter change } \int_{R^{2}} \text { and } \frac{\partial}{\partial t} \\ \text { In the course, you may assume it } \\ \text { holds }\end{array}\right)$

$$
\begin{aligned}
\frac{\partial I}{\partial t}(x, y ; t)= & \int_{\mathbb{R}^{2}} \frac{\partial f}{\partial t}(u, v ; t) I_{0}(x-u, y-v) d u d v \\
= & \int_{\mathbb{R}} \mathbb{R}^{2} t \frac{\partial^{2} g}{\partial u^{2}} I_{0}(x-u, y-v) d u d v \\
& +\int_{\mathbb{R}^{2}} t \frac{\partial^{2} g}{\partial v^{2}} I_{0}(x-u, y-v) d u d v
\end{aligned}
$$

Integantion by Pout, $\left[\begin{array}{c}9, ~ I o ~ h a s ~ t o ~ b e ~ v a n i s h e d ~ \\ \text { at } \infty,-\infty \text { such that the }\end{array}\right.$ improper integration make sense

$$
\begin{aligned}
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} t g(u, v ; t) \frac{\partial^{2}}{\partial u^{2}} J_{0}(x-u, y-v) d u d v \\
& +\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f \rho(u, v ; t) \frac{\partial^{\prime}}{\partial v^{\prime}} J_{0}(x-u, y-v) d u d v
\end{aligned}
$$

Change of vanreble: $x^{\prime}=x-u, y^{\prime}=y-v$,

$$
\begin{aligned}
& =\int_{\infty}^{-\infty} \int_{\infty}^{-\infty} t g\left(x-x^{\prime}, y-y^{\prime} ; t\right)\left[(-1)^{2} \frac{\partial^{2}}{\partial x^{\prime}} I_{0}\left(x^{\prime}, y^{\prime}\right)\right]\left(-d x^{\prime}\right)\left(\cdot d y^{\prime}\right) \\
& +\int_{\infty}^{-\infty} \int_{\infty}^{-\infty} t g\left(x-x^{\prime}, y-y^{\prime} ; t\right)\left[(-1)^{2} \frac{\partial^{2}}{\partial y^{\prime 2}} I_{0}\left(x^{\prime}, y^{\prime}\right)\right]\left(-d x^{\prime}\right)\left(\cdot d y^{\prime}\right) \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} t g\left(x-x^{\prime}, y-y^{\prime} ; t\right) \frac{\partial^{2}}{\partial x^{\prime 2}} I 。\left(x^{\prime}, y^{\prime}\right) d x^{\prime} d y^{\prime} \\
& \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} t g\left(x-x^{\prime}, y-y^{\prime} ; t\right) \frac{\partial^{2}}{\partial y^{\prime 2}} I_{0}\left(x^{\prime}, y^{\prime}\right) d x^{\prime} d y^{\prime} \\
& N_{0}-6 \frac{\partial}{\partial x}\left(f, * f_{2}\right)=\frac{\partial f_{1}}{\partial x} * f_{2}=f_{1} * \frac{\partial f_{2}}{\partial x} \\
& \text { Them }
\end{aligned}
$$

$$
\begin{aligned}
\frac{\partial I}{\partial t} & =t\left(\frac{\partial^{2}}{\partial x^{\prime}}+\frac{\partial^{2}}{\partial y^{\prime}}\right) \int_{\mathbb{R}^{2}} g\left(x-x^{\prime}, y-y^{\prime} ; t\right) I_{0}\left(x^{\prime}, y^{\prime}\right) d x^{\prime} d y^{\prime} \\
& =g * I_{0}=I \\
\frac{\partial I}{\partial t} & =t \Delta I . \\
\quad \therefore I & =g * I_{0} \text { solve the } P D Z
\end{aligned}
$$

Idea for using Heat Equation,
In Physics,
the heat energy will spread out, the temperature will tends to be lance ice. high tempurtur

The distribution of heat enngy is sonooting

$$
\text { as } t \rightarrow \infty
$$

